【中2数学】二等辺三角形の要点・練習問題

スポンサーリンク

中2数学の「二等辺三角形」についてまとめています。二等辺三角形に関して、定義・定理、証明、角度を求める問題までふれています。それでは、中2数学の「二等辺三角形」をみていきましょう。

スポンサーリンク

二等辺三角形の定義

定義とは、使う言葉の意味をはっきり述べているものです。

二等辺三角形の定義は、「2つの辺が等しい三角形」

二等辺三角形の性質

AB=ACである二等辺三角形ABCで等しい辺のつくる∠Aを頂角、頂角に対する辺BCを底辺、底辺の両端の角∠B、∠Cを底角といいます。

二等辺三角形

二等辺三角形

  • 二等辺三角形の2つの底角は等しい。

二等辺三角形の頂角の二等分線

二等辺三角形の頂角の二等分線は、底辺を垂直に2等分します。

スポンサーリンク

二等辺三角形の定理

定理とは、証明されたことがらのうち、基本になるものです。

  • 二等辺三角形の2つの底角は等しい。
  • 二等辺三角形の頂角の二等分線は、底辺を垂直に2等分する。

2つの角が等しい三角形は、二等辺三角形であるといえます。

底辺を垂直に2等分する証明

AB=ACの二等辺三角形ABCで、底辺BCの中点をMとすると、線分AMは∠Aを2等分することの証明です。
二等辺三角形の証明

△ABMと△ACMで
仮定より、AB=AC …①
仮定より BM=CM …②
AMは、共通だから AM=AM …③
①②③より 3辺がそれぞれ等しいので、△ABM≡△ACM
合同な図形では対応する角は等しいので、∠BAM=∠CAM
したがて、線分AMは∠Aを2等分します。

スポンサーリンク

【練習問題】二等辺三角形

【問1】AB=ACであり、頂角∠BACが鈍角である二等辺三角形ABCがある。下の図のように、辺BAの延長線上にCA=CDとなる点Dをとる。∠ACD=16°のとき、∠ABCを求めなさい。
二等辺三角形の角度

【問2】次の図の∠x の大きさを求めなさい。(OA=AB=BC=CD)
二等辺三角形の角度

【問3】△ABCで、∠B=∠Cとすると、△ABCはAB=ACの二等辺三角形となることを証明せよ。
二等辺三角形の証明

【解答】二等辺三角形

【問1】41°
【問2】21°

【問3】
∠Aの二等分線をひき、BCとの交点をDとします。

△AMBと△AMCで
仮定より、∠ABM=∠ACM …①
仮定より ∠BAM=∠CAM …②
三角形の3つの内角の和が180°であることと①②より
∠AMC=∠AMC…③
共通な辺より AM=AM…④
②③④より 1組の辺とその両端の角がそれぞれ等しいので、
△AMB≡△AMC
合同な図形では、対応する辺は等しいので。
AB=AC

中学数学
スポンサーリンク
シェアする
この記事を書いた人
君島琴美

Examee編集長。このサイトでは、理科以外の教科を担当。基礎学習サイトPikuuのライターも務める。普段の学習塾では、数学、面接、総合型選抜対策の講座を受け持つ。エグゼクティブ講師として、数々の難関高校、難関大学への合格者を輩出している。

君島琴美をフォローする
【学年別】数学を学ぶ

中学数学について学年ごとにまとめています。定期テストから高校入試対策まで対応しています。もちろん無料です。

コメント

テキストのコピーはできません。